Precessione degli equinozi

Da Ufopedia.

(Differenze fra le revisioni)
(Note)
(Spostamento delle costellazioni zodiacali)
 
(37 revisioni intermedie non mostrate.)
Riga 1: Riga 1:
-
[[Immagine:800px-Precession torque.jpg|thumb|left|350px|Lo schiacciamento della Terra ai poli può essere schematizzato ipotizzando la Terra sferica con una massa anulare (in azzurro) intorno all'equatore. L'attrazione gravitazionale esercitata sulla massa anulare (in verde) dà origine a una componente tangenziale nord-sud (in celeste), la quale produce una coppia (in arancione): quest'ultima, nel tentativo di raddrizzare la Terra, ne sposta l'asse di rotazione (in magenta) in una nuova direzione (in giallo), dando luogo alla precessione (in bianco).]]
+
[[Immagine:800px-Precession torque.jpg|thumb|right|250px|Lo schiacciamento della Terra ai poli può essere schematizzato ipotizzando la Terra sferica con una massa anulare (in azzurro) intorno all'equatore. L'attrazione gravitazionale esercitata sulla massa anulare (in verde) dà origine a una componente tangenziale nord-sud (in celeste), la quale produce una coppia (in arancione): quest'ultima, nel tentativo di raddrizzare la Terra, ne sposta l'asse di rotazione (in magenta) in una nuova direzione (in giallo), dando luogo alla precessione (in bianco).]]
[[Immagine:Precessione0.PNG|thumb|right|250px|Rotazione, precessione e nutazione della Terra]]
[[Immagine:Precessione0.PNG|thumb|right|250px|Rotazione, precessione e nutazione della Terra]]
-
La '''precessione degli [[equinozio|equinozi]]''' è un movimento della [[Terra]] che fa cambiare in modo lento ma continuo l'orientamento del suo asse di rotazione rispetto alla sfera ideale delle [[stelle fisse]].
+
La '''precessione degli [[equinozio|equinozi]]''' è un movimento della [[gaia|Terra]] che fa cambiare in modo lento ma continuo l'orientamento del suo asse di rotazione rispetto alla sfera ideale delle [[stelle fisse]].
-
L'[[asse terrestre]] subisce una [[precessione]] (una rotazione dell'asse attorno alla verticale, simile a quella di una trottola) a causa della combinazione di due fattori: la forma non perfettamente sferica della Terra (che è uno [[sferoide]] oblato, sporgente all'[[equatore]]) e le forze gravitazionali della [[Luna]] e del [[Sole]] che, agendo sulla sporgenza equatoriale, cercano di allineare l'asse della Terra con la perpendicolare al piano dell'[[eclittica]]. Il risultato è un moto di precessione che compie un giro completo ogni 25800 anni circa, durante il quale la posizione delle [[stella|stelle]] sulla [[sfera celeste]] cambia lentamente. Di conseguenza, anche la posizione dei [[Polo celeste|poli celesti]] cambia: infatti, tra circa 13000 anni, sarà [[Vega]] e non l'attuale [[Stella Polare|Polaris]] ad indicare il polo nord sulla sfera celeste.
+
L'[[asse terrestre]] subisce una [[precessione]] (una rotazione dell'asse attorno alla verticale, simile a quella di una trottola) a causa della combinazione di due fattori: la forma non perfettamente sferica della Terra (che è uno [[sferoide]] oblato, sporgente all'[[equatore]]) e le forze gravitazionali della [[Luna]] e del [[nana gialla|Sole]] che, agendo sulla sporgenza equatoriale, cercano di allineare l'asse della Terra con la perpendicolare al piano dell'[[eclittica]]. Il risultato è un moto di precessione che compie un giro completo ogni 25800 anni circa, durante il quale la posizione delle [[stella|stelle]] sulla [[sfera celeste]] cambia lentamente. Di conseguenza, anche la posizione dei [[Polo celeste|poli celesti]] cambia: infatti, tra circa 13000 anni, sarà [[Vega]] e non l'attuale [[Stella Polare|Polaris]] ad indicare il polo nord sulla sfera celeste.
La precessione non è perfettamente regolare, perché la Luna e il Sole non si trovano sempre nello stesso piano e si muovono l'una rispetto all'altro, causando una variazione continua della forza agente sulla Terra. Questa variazione influisce anche sul moto di [[nutazione]] terrestre.
La precessione non è perfettamente regolare, perché la Luna e il Sole non si trovano sempre nello stesso piano e si muovono l'una rispetto all'altro, causando una variazione continua della forza agente sulla Terra. Questa variazione influisce anche sul moto di [[nutazione]] terrestre.
==Precessione planetaria e lunisolare==
==Precessione planetaria e lunisolare==
-
[[Immagine:Precessione.PNG|thumb|right|330px|<center>Moti della Terra</center>]]
+
[[Immagine:Precessione.PNG|thumb|right|330px|Moti della Terra]]
===Premessa===
===Premessa===
Riga 19: Riga 19:
* Il piano equatoriale, perpendicolare all'asse di rotazione terrestre e passante per l'[[equatore]], non coincide con il piano dell'[[eclittica]], contenente l'orbita descritta dalla Terra nella sua rotazione intorno al Sole, ma forma con essa un angolo di 23° 27'.
* Il piano equatoriale, perpendicolare all'asse di rotazione terrestre e passante per l'[[equatore]], non coincide con il piano dell'[[eclittica]], contenente l'orbita descritta dalla Terra nella sua rotazione intorno al Sole, ma forma con essa un angolo di 23° 27'.
-
[[Immagine:Precessing-top.gif|200px|thumb|left|<center>La precessione di una trottola</center>]]
+
[[Immagine:Precessing-top.gif|200px|thumb|right|La precessione di una trottola]]
===Moto di precessione===
===Moto di precessione===
Riga 31: Riga 31:
La precessione dell'asse terrestre è dovuta, come già detto, a due fattori: la forma non perfettamente sferica della Terra, che presenta un rigonfiamento all'equatore a seguito della rotazione su sé stessa e la presenza di corpi celesti che producono una coppia gravitazionale su tale rigonfiamento.  
La precessione dell'asse terrestre è dovuta, come già detto, a due fattori: la forma non perfettamente sferica della Terra, che presenta un rigonfiamento all'equatore a seguito della rotazione su sé stessa e la presenza di corpi celesti che producono una coppia gravitazionale su tale rigonfiamento.  
-
Se la Terra fosse perfettamente sferica nessun corpo celeste potrebbe esercitare una coppia gravitazionale su di essa: però, a causa del rigonfiamento equatoriale, la [[Luna]] e il [[Sole]] producono una coppia gravitazionale che tende a raddrizzare la Terra, ossia a far coincidere il piano equatoriale con il piano dell'eclittica. È questa coppia (l'equivalente del colpetto dato alla trottola descritta sopra) che provoca la precessione '''in senso orario''' dell'asse di rotazione terrestre. Poiché essa è dovuta all'effetto combinato di Luna e Sole, viene più propriamente chiamata '''precessione lunisolare'''.
+
Se la Terra fosse perfettamente sferica nessun corpo celeste potrebbe esercitare una coppia gravitazionale su di essa: però, a causa del rigonfiamento equatoriale, la [[Luna]] e il [[Sole]] producono una coppia gravitazionale che tende a raddrizzare la Terra, ossia a far coincidere il piano equatoriale con il piano dell'eclittica. È questa coppia (l'equivalente del colpetto dato alla trottola descritta sopra) che provoca la precessione ''in senso orario'' dell'asse di rotazione terrestre. Poiché essa è dovuta all'effetto combinato di Luna e Sole, viene più propriamente chiamata '''precessione lunisolare'''.
Anche gli altri pianeti del [[sistema solare]], in misura nettamente minore, esercitano una attrazione sulla Terra, dando vita alla cosiddetta '''precessione planetaria''': quest'ultima è trascurabile rispetto alla precessione lunisolare.
Anche gli altri pianeti del [[sistema solare]], in misura nettamente minore, esercitano una attrazione sulla Terra, dando vita alla cosiddetta '''precessione planetaria''': quest'ultima è trascurabile rispetto alla precessione lunisolare.
-
L'effetto della precessione lunisolare è di 50,37" (0° 0' 50,37") '''in senso orario''' (di cui 30" per esclusiva influenza lunare), mentre la precessione planetaria è di 0,11" (0° 0' 0,11") '''in senso antiorario''': pertanto, la precessione totale risulta essere di circa 50,26" all'anno in senso orario.
+
L'effetto della precessione lunisolare è di 50,37" (0° 0' 50,37") ''in senso orario'' (di cui 30" per esclusiva influenza lunare), mentre la precessione planetaria è di 0,11" (0° 0' 0,11") ''in senso antiorario'': pertanto, la precessione totale risulta essere di circa 50,26" all'anno in senso orario.
L'asse terrestre descrive quindi una circonferenza completa in circa 25786 anni [1].
L'asse terrestre descrive quindi una circonferenza completa in circa 25786 anni [1].
=== Precessione oraria dell'asse terrestre ===
=== Precessione oraria dell'asse terrestre ===
-
Il fatto che il moto di precessione della Terra sia '''orario''' mentre quello di rotazione su sé stessa sia '''antiorario''' non è in contrasto con l'esempio della trottola. Infatti, se la Terra fosse diritta e una forza provasse a inclinarla, allora essa svilupperebbe un moto di precessione antiorario, nello stesso verso quindi della rotazione su sé stessa, proprio come nel caso della trottola.  
+
Il fatto che il moto di precessione della Terra sia ''orario'' mentre quello di rotazione su sé stessa sia ''antiorario'' non è in contrasto con l'esempio della trottola. Infatti, se la Terra fosse diritta e una forza provasse a inclinarla, allora essa svilupperebbe un moto di precessione antiorario, nello stesso verso quindi della rotazione su sé stessa, proprio come nel caso della trottola.  
-
In questo caso, però, si verifica la situazione opposta: la Terra è inclinata e una forza tende a raddrizzarla, facendo nascere un moto di precessione '''orario''', contrario al verso antiorario di rotazione della Terra.
+
In questo caso, però, si verifica la situazione opposta: la Terra è inclinata e una forza tende a raddrizzarla, facendo nascere un moto di precessione ''orario'', contrario al verso antiorario di rotazione della Terra.
===Differenza anno solare/anno siderale===
===Differenza anno solare/anno siderale===
Riga 49: Riga 49:
Il tempo impiegato dalla Terra per ruotare di 360° intorno al Sole corrisponde all'[[anno siderale]], mentre quello impiegato per compiere 359°59'10" corrisponde all'anno solare o [[Anno tropico|tropico]]: quest'ultimo è quello che, comunemente, viene chiamato anno.<br>  
Il tempo impiegato dalla Terra per ruotare di 360° intorno al Sole corrisponde all'[[anno siderale]], mentre quello impiegato per compiere 359°59'10" corrisponde all'anno solare o [[Anno tropico|tropico]]: quest'ultimo è quello che, comunemente, viene chiamato anno.<br>  
Il [[calendario gregoriano]], da noi in vigore, si basa sull'anno tropico e non su quello siderale: esso, quindi, tiene conto della precessione degli equinozi e garantisce che il solstizio d'estate capiti sempre lo stesso giorno dell'anno, cosa che non succederebbe se si basasse sull'anno siderale.
Il [[calendario gregoriano]], da noi in vigore, si basa sull'anno tropico e non su quello siderale: esso, quindi, tiene conto della precessione degli equinozi e garantisce che il solstizio d'estate capiti sempre lo stesso giorno dell'anno, cosa che non succederebbe se si basasse sull'anno siderale.
-
[[Immagine:800px-Precessione6.PNG|thumb|left|1050px|<center>Trascorso un anno, il solstizio d'estate si anticipa di 50"</center>]]
+
[[Immagine:800px-Precessione6.PNG|thumb|center|690px|Trascorso un anno, il solstizio d'estate si anticipa di 50"]]
-
<br><br>
+
== Effetti della precessione ==
== Effetti della precessione ==
Riga 57: Riga 56:
La linea degli equinozi è quella che congiunge il punto in cui si verifica l'equinozio di primavera con quello in cui si verifica l'equinozio d'autunno. Come accade per i solstizi, anche gli equinozi si spostano di 50,26" l'anno in senso orario o, equivalentemente, di 1° ogni 71,6 anni circa. La linea degli equinozi quindi si sposta nel tempo girando in senso orario e compiendo un giro completo di 360° in circa 25800 anni: la Terra, di conseguenza, assume inclinazioni opposte ogni 12.900 anni circa.
La linea degli equinozi è quella che congiunge il punto in cui si verifica l'equinozio di primavera con quello in cui si verifica l'equinozio d'autunno. Come accade per i solstizi, anche gli equinozi si spostano di 50,26" l'anno in senso orario o, equivalentemente, di 1° ogni 71,6 anni circa. La linea degli equinozi quindi si sposta nel tempo girando in senso orario e compiendo un giro completo di 360° in circa 25800 anni: la Terra, di conseguenza, assume inclinazioni opposte ogni 12.900 anni circa.
-
[[Immagine:800px-Precessione5.PNG|thumb|center|750px|<center>Ogni 12.900 anni circa, il solstizio d'estate si verifica in posizione diametralmente opposta a quanto succedeva prima.</center>]]
+
[[Immagine:800px-Precessione5.PNG|thumb|center|690px|Ogni 12.900 anni circa, il solstizio d'estate si verifica in posizione diametralmente opposta a quanto succedeva prima.]]
È proprio dal fatto che la linea degli equinozi si anticipa di anno in anno che l'intero fenomeno prende il nome di precessione degli equinozi: il termine precessione deriva dal latino e significa precedere, appunto a ricordare che gli equinozi ogni anno si presentano con un leggero anticipo rispetto all'anno precedente.
È proprio dal fatto che la linea degli equinozi si anticipa di anno in anno che l'intero fenomeno prende il nome di precessione degli equinozi: il termine precessione deriva dal latino e significa precedere, appunto a ricordare che gli equinozi ogni anno si presentano con un leggero anticipo rispetto all'anno precedente.
Riga 69: Riga 68:
=== Spostamento dei poli celesti ===
=== Spostamento dei poli celesti ===
-
[[Immagine:Precession N.jpg|thumb|left|300px|<center>Lo spostamento del polo nord celeste</center>]]
+
[[Immagine:Precession N.jpg|thumb|right|300px|Lo spostamento del polo nord celeste]]
-
[[Immagine:Precession S.jpg|thumb|right|300px|<center>Lo spostamento del polo sud celeste</center>]]
+
[[Immagine:Precession S.jpg|thumb|right|300px|Lo spostamento del polo sud celeste]]
<br>
<br>
La precessione dell'asse terrestre comporta che esso punti nel tempo in direzioni diverse: oggi il polo nord della sfera celeste (la proiezione sulla volta celeste dell'asse terrestre in direzione del [[Polo Nord]]) si trova a meno di 1° [2] dalla non molto luminosa [[stella Polare]], la cui [[magnitudine apparente]] è infatti di solo 1,97.  
La precessione dell'asse terrestre comporta che esso punti nel tempo in direzioni diverse: oggi il polo nord della sfera celeste (la proiezione sulla volta celeste dell'asse terrestre in direzione del [[Polo Nord]]) si trova a meno di 1° [2] dalla non molto luminosa [[stella Polare]], la cui [[magnitudine apparente]] è infatti di solo 1,97.  
Riga 88: Riga 87:
La precessione degli equinozi ha fatto sì che i segni zodiacali, una volta coincidenti con le zone di cielo occupate dalle rispettive costellazioni, siano oggi in realtà spostati di una trentina di gradi: tra l'inizio di un certo segno zodiacale e l'entrata del [[Sole]] nella costellazione con lo stesso nome passa circa un mese. Ogni costellazione dello [[zodiaco]] copre, infatti, 30° [3][4], provocando il ritardo di un mese.
La precessione degli equinozi ha fatto sì che i segni zodiacali, una volta coincidenti con le zone di cielo occupate dalle rispettive costellazioni, siano oggi in realtà spostati di una trentina di gradi: tra l'inizio di un certo segno zodiacale e l'entrata del [[Sole]] nella costellazione con lo stesso nome passa circa un mese. Ogni costellazione dello [[zodiaco]] copre, infatti, 30° [3][4], provocando il ritardo di un mese.
-
[[Immagine:800px-Zodiaco.PNG|thumb|center|950px|La precessione maturata in 2100 anni ha avuto come conseguenza che la Terra ruotasse il suo asse di rotazione di 30° alla sua destra: al solstizio d'estate, mentre 2100 anni fa il sole si trovava a transitare nella costellazione del Cancro, oggi, a causa della precessione, lo stesso transita in quella dei Gemelli.]]
+
[[Immagine:800px-Zodiaco.PNG|thumb|center|690px|La precessione maturata in 2100 anni ha avuto come conseguenza che la Terra ruotasse il suo asse di rotazione di 30° alla sua destra: al solstizio d'estate, mentre 2100 anni fa il sole si trovava a transitare nella costellazione del Cancro, oggi, a causa della precessione, lo stesso transita in quella dei Gemelli.]]
Pertanto, quando una tavola astrologica indica che un certo pianeta "entra" in un segno, essa si riferisce ad un settore di cielo occupato in realtà dalla costellazione col nome del segno precedente: per esempio, nel periodo dell'[[Ariete (astrologia)|Ariete]], il Sole si trova in realtà nella precedente costellazione dei [[Pesci (astrologia)|Pesci]].
Pertanto, quando una tavola astrologica indica che un certo pianeta "entra" in un segno, essa si riferisce ad un settore di cielo occupato in realtà dalla costellazione col nome del segno precedente: per esempio, nel periodo dell'[[Ariete (astrologia)|Ariete]], il Sole si trova in realtà nella precedente costellazione dei [[Pesci (astrologia)|Pesci]].
Riga 98: Riga 97:
===Babilonesi===
===Babilonesi===
-
Secondo [[Albategnius]][http://books.google.it/books?id=yaRJAAAAMAAJ&pg=PA38&lpg=PA38&dq=albategnius+chaldean&source=web&ots=uJGZIL0uGN&sig=pb0g23nQ1QYgrBvk15Zlz61cHuk&hl=en&sa=X&oi=book_result&resnum=2&ct=result], gli astronomi [[caldei]] distinguevano l'anno tropico, stimato in 357 giorni, 5 ore, 49 minuti e 30 secondi, da quello siderale, stimato in 365 giorni, 6 ore e 11 minuti e quindi dovevano essere a conoscenza della precessione.
+
Secondo [[Albategnius]] [5], gli astronomi [[caldei]] distinguevano l'anno tropico, stimato in 357 giorni, 5 ore, 49 minuti e 30 secondi, da quello siderale, stimato in 365 giorni, 6 ore e 11 minuti e quindi dovevano essere a conoscenza della precessione.
-
Si è inoltre discusso [5] del fatto che l'astronomo [[Kidinnu]] avesse ipotizzato la precessione già nel [[315 a.C.]]: tuttavia, non ci sono indicazioni che egli avesse realmente raggiunto una tale conclusione e quindi si è propensi a scartare l'idea che l'astronomo babilonese sia stato il primo scopritore del fenomeno.
+
Si è inoltre discusso [6] del fatto che l'astronomo [[Kidinnu]] avesse ipotizzato la precessione già nel [[315 a.C.]]: tuttavia, non ci sono indicazioni che egli avesse realmente raggiunto una tale conclusione e quindi si è propensi a scartare l'idea che l'astronomo babilonese sia stato il primo scopritore del fenomeno.
=== Egizi ===
=== Egizi ===
[[Immagine:Zodiaque-dendera.jpg|left|thumb|150 px|Lo zodiaco del Tempio di Hathor a Dendera]]
[[Immagine:Zodiaque-dendera.jpg|left|thumb|150 px|Lo zodiaco del Tempio di Hathor a Dendera]]
 +
Altri sostengono [7][8] che la precessione fosse nota agli [[Antico Egitto|antichi Egizi]] prima di Ipparco.
-
Altri sostengono [http://books.google.it/books?id=BtQOAAAAQAAJ&pg=PA209&dq=egiziani+precessione&hl=en] [http://books.google.it/books?id=vuApnLoxLRMC&pg=PA15&dq=egizi+precessione&hl=en&sig=ACfU3U0CwOWVNib40-AELUnNdQl-AvLnZQ] che la precessione fosse nota agli [[Antico Egitto|antichi Egizi]] prima di Ipparco.
+
Alcune costruzioni (come quelle nel complesso templare di [[Karnak]]) sarebbero allineate verso punti dell'orizzonte in cui certe stelle sorgevano o tramontavano in momenti chiave dell'anno. Quando, trascorso qualche secolo, la precessione rendeva gli allineamenti obsoleti, i templi venivano nuovamente ricostruiti per tenere conto delle nuove orientazioni [9]. È da notare tuttavia che il fatto che l'allineamento di una stella fosse diventato obsoleto non necessariamente significava che gli Egizi avessero compreso il meccanismo dello spostamento delle stelle nel cielo al tasso di 1° ogni 72 anni: ciò nonostante, ipotizzando che registrassero la data della ricostruzione dei templi, è plausibile supporre che avessero notato, sia pure approssimativamente, il fenomeno della precessione.
-
Alcune costruzioni (come quelle nel complesso templare di [[Karnak]]) sarebbero allineate verso punti dell'orizzonte in cui certe stelle sorgevano o tramontavano in momenti chiave dell'anno. Quando, trascorso qualche secolo, la precessione rendeva gli allineamenti obsoleti, i templi venivano nuovamente ricostruiti per tenere conto delle nuove orientazioni[http://books.google.it/books?id=UEiSfS90kW4C&pg=PA170&vq=alter&dq=egypt's+legacy&hl=en&source=gbs_search_s&sig=ACfU3U1ehhOm6EwSDD7y6qK_g9v_tPTl0Q]. È da notare tuttavia che il fatto che l'allineamento di una stella fosse diventato obsoleto non necessariamente significava che gli Egizi avessero compreso il meccanismo dello spostamento delle stelle nel cielo al tasso di 1° ogni 72 anni: ciò nonostante, ipotizzando che registrassero la data della ricostruzione dei templi, è plausibile supporre che avessero notato, sia pure approssimativamente, il fenomeno della precessione.
+
Un altro esempio a sostegno della conoscenza del fenomeno da parte degli Egizi è dato [10] dallo [[Tempio di Dendera|Zodiaco]] presente nel tempio di Hathor a Dendera della tarda età tolemaica: si ritiene che tale mappa registri la precessione degli equinozi.
-
 
+
-
Un altro esempio a sostegno della conoscenza del fenomeno da parte degli Egizi è dato [6] dallo [[Tempio di Dendera|Zodiaco]] presente nel tempio di Hathor a Dendera della tarda età tolemaica: si ritiene che tale mappa registri la precessione degli equinozi.
+
Ad ogni modo, anche ammesso che gli Egizi conoscessero la precessione, tale fatto non è stato tramandato in alcun testo astronomico.
Ad ogni modo, anche ammesso che gli Egizi conoscessero la precessione, tale fatto non è stato tramandato in alcun testo astronomico.
===Ipparco===
===Ipparco===
-
[[Immagine:Ipparco.jpg|thumb|right|<center>[[Ipparco di Nicea]]</center>]]
+
[[Immagine:Ipparco2.jpg|thumb|right|[[Ipparco di Nicea]] ]]
-
Anche se [[Aristarco di Samo]] possedeva valori distinti per l'[[anno tropico]] e quello [[anno siderale|siderale]] già nel [[280 a.C.]], la scoperta della precessione è solitamente attribuita all'astronomo greco [[Ipparco di Nicea]], intorno al [[130 a.C.]], il quale ne diede una spiegazione nella sua opera ''Sullo spostamento dei segni solstiziali ed equinoziali''; l'opera di Ipparco è andata perduta, ma il metodo da lui adottato è descritto nell' ''Almagesto'' [7] di [[Claudio Tolomeo]], astronomo del [[II secolo]].
+
Anche se [[Aristarco di Samo]] possedeva valori distinti per l'[[anno tropico]] e quello [[anno siderale|siderale]] già nel [[280 a.C.]], la scoperta della precessione è solitamente attribuita all'astronomo greco [[Ipparco di Nicea]], intorno al [[130 a.C.]], il quale ne diede una spiegazione nella sua opera ''Sullo spostamento dei segni solstiziali ed equinoziali''; l'opera di Ipparco è andata perduta, ma il metodo da lui adottato è descritto nell' ''Almagesto'' [11] di [[Claudio Tolomeo]], astronomo del [[II secolo]].
-
Ipparco misurò la longitudine dell'[[eclittica]] della stella [[Spica]] e di altre stelle luminose durante un [[eclissi lunare]] [8]. Egli aveva già sviluppato un metodo per calcolare la longitudine del Sole in ogni momento del giorno e della notte: bastava quindi sommare a questo dato altri dati opportuni per ricavare la posizione di una stella. Pensò allora di basarsi sulle eclissi lunari che si verificano sempre di notte (quando anche le stelle sono visibili per poterle misurare), durante un plenilunio, in corrispondenza dell'allineamento Luna-Terra-Sole: al culmine dell'eclissi, la Luna è esattamente a 180° dal Sole. A Ipparco bastò semplicemente misurare l'arco longitudinale che separava Spica dalla Luna proprio al culmine dell'eclissi: a questo valore, egli sommò la longitudine che presentava il Sole in quel momento grazie al metodo che aveva sviluppato, più 180° per la longitudine della Luna, in esatta opposizione al Sole. Trovò così che Spica era circa 6° a ovest del punto dell'equinozio autunnale. Confrontando le sue misurazioni con quelle di [[Timocari]] di Alessandria (contemporaneo di [[Euclide]]) e di [[Aristillo]] (III secolo a.C.), autori del primo catalogo stellare del mondo occidentale di cui si abbia traccia, notò che la longitudine di Spica era diminuita di circa 2° in più di 150 anni. Ipotizzò che solo le stelle dello [[zodiaco]] si fossero spostate nel tempo: Tolomeo la chiamò "prima ipotesi" [9], ma non riportò altre successive ipotesi che Ipparco avrebbe successivamente avanzato. Considerando lo spostamento misurato di 2° in 150 anni, Ipparco stimò la precessione in 46" l'anno,<ref>2°/~150anni x 3600"/1° = ~46"/anno</ref> molto vicino al valore effettivo di 50,26"<ref>360°/~25800anni x 3600"/1° = ~50,26"/anno</ref> e senz'altro migliore della stima di 36" fatta tre secoli dopo da Tolomeo.
+
Ipparco misurò la longitudine dell'[[eclittica]] della stella [[Spica]] e di altre stelle luminose durante un [[eclissi lunare]] [12]. Egli aveva già sviluppato un metodo per calcolare la longitudine del Sole in ogni momento del giorno e della notte: bastava quindi sommare a questo dato altri dati opportuni per ricavare la posizione di una stella. Pensò allora di basarsi sulle eclissi lunari che si verificano sempre di notte (quando anche le stelle sono visibili per poterle misurare), durante un plenilunio, in corrispondenza dell'allineamento Luna-Terra-Sole: al culmine dell'eclissi, la Luna è esattamente a 180° dal Sole. A Ipparco bastò semplicemente misurare l'arco longitudinale che separava Spica dalla Luna proprio al culmine dell'eclissi: a questo valore, egli sommò la longitudine che presentava il Sole in quel momento grazie al metodo che aveva sviluppato, più 180° per la longitudine della Luna, in esatta opposizione al Sole. Trovò così che Spica era circa 6° a ovest del punto dell'equinozio autunnale. Confrontando le sue misurazioni con quelle di [[Timocari]] di Alessandria (contemporaneo di [[Euclide]]) e di [[Aristillo]] (III secolo a.C.), autori del primo catalogo stellare del mondo occidentale di cui si abbia traccia, notò che la longitudine di Spica era diminuita di circa 2° in più di 150 anni. Ipotizzò che solo le stelle dello [[zodiaco]] si fossero spostate nel tempo: Tolomeo la chiamò "prima ipotesi" [13], ma non riportò altre successive ipotesi che Ipparco avrebbe successivamente avanzato. Considerando lo spostamento misurato di 2° in 150 anni, Ipparco stimò la precessione in 46" l'anno [14], molto vicino al valore effettivo di 50,26" [15] e senz'altro migliore della stima di 36" fatta tre secoli dopo da Tolomeo.
Ipparco inoltre studiò la precessione nell'opera ''Sulla lunghezza dell'anno''. Usando le osservazioni degli equinozi e dei solstizi, notò che la lunghezza dell'anno tropico era di 365+1/4-1/300 giorni, ovvero 365 giorni, 5 ore, 55 minuti e 12 secondi; avendo stimato che la velocità di precessione era non inferiore a 1° in un secolo, calcolò la durata dell'anno sidereo in 365+1/4+1/144 giorni, ovvero 365 giorni, 6 ore e 10 minuti.
Ipparco inoltre studiò la precessione nell'opera ''Sulla lunghezza dell'anno''. Usando le osservazioni degli equinozi e dei solstizi, notò che la lunghezza dell'anno tropico era di 365+1/4-1/300 giorni, ovvero 365 giorni, 5 ore, 55 minuti e 12 secondi; avendo stimato che la velocità di precessione era non inferiore a 1° in un secolo, calcolò la durata dell'anno sidereo in 365+1/4+1/144 giorni, ovvero 365 giorni, 6 ore e 10 minuti.
-
<br><br>
+
 
-
[[Immagine:Claudius_Ptolemaeus.jpg|thumb|left|<center>[[Claudio Tolomeo]]</center>]]
+
[[Immagine:Claudius_Ptolemaeus.jpg|thumb|left|[[Claudio Tolomeo]] ]]
-
<br>
+
===Tolomeo===
===Tolomeo===
Riga 132: Riga 129:
Tolomeo confrontò i suoi dati con quelli di Ipparco, [[Menelao di Alessandria]], Timocari e [[Agrippa (astronomo)|Agrippa]], e scoprì che tra l'epoca di Ipparco e la sua (circa 265 anni), le stelle si erano spostate di 2° 40', ossia 1° in un secolo (36" l'anno contro i 50,26" l'anno attualmente accertati equivalenti a 1° in 72 anni). Osservò inoltre che la precessione riguardava tutte le stelle fisse e non solo quelle vicino all'eclittica, come ipotizzato da Ipparco.
Tolomeo confrontò i suoi dati con quelli di Ipparco, [[Menelao di Alessandria]], Timocari e [[Agrippa (astronomo)|Agrippa]], e scoprì che tra l'epoca di Ipparco e la sua (circa 265 anni), le stelle si erano spostate di 2° 40', ossia 1° in un secolo (36" l'anno contro i 50,26" l'anno attualmente accertati equivalenti a 1° in 72 anni). Osservò inoltre che la precessione riguardava tutte le stelle fisse e non solo quelle vicino all'eclittica, come ipotizzato da Ipparco.
-
<br><br><br><br><br>
+
 
===Altri astronomi dell'antichità===
===Altri astronomi dell'antichità===
Riga 140: Riga 137:
In Oriente, [[Yu Xi]], vissuto nel [[IV secolo a.C.]], fu il primo astronomo cinese a menzionare la precessione: egli stimò la sua velocità nell'ordine di 1° ogni 50 anni.
In Oriente, [[Yu Xi]], vissuto nel [[IV secolo a.C.]], fu il primo astronomo cinese a menzionare la precessione: egli stimò la sua velocità nell'ordine di 1° ogni 50 anni.
-
 
===Dal Medio Evo in poi===
===Dal Medio Evo in poi===
-
[[Immagine:Copernicus.jpg|thumb|left|<center>[[Copernico]]</center>]]
+
[[Immagine:Copernicus2.jpg|thumb|left|[[Copernico]] ]]
Nel Medio Evo, gli astronomi considerarono la "'''trepidazione'''" come un moto delle stelle fisse da sommare alla precessione e non in sua alternativa. Questa teoria è attribuita all'astronomo arabo [[Thabit ibn Qurra]], anche se fu Teone che per primo parlò di trepidazione, considerandola però un moto alternativo a quello della precessione e non da sommarsi a quest'ultima.
Nel Medio Evo, gli astronomi considerarono la "'''trepidazione'''" come un moto delle stelle fisse da sommare alla precessione e non in sua alternativa. Questa teoria è attribuita all'astronomo arabo [[Thabit ibn Qurra]], anche se fu Teone che per primo parlò di trepidazione, considerandola però un moto alternativo a quello della precessione e non da sommarsi a quest'ultima.
-
[[Immagine:481px-Isaac Newton.jpeg|thumb|right|<center>[[Isacco Newton]]</center>]]
+
[[Immagine:481px-Isaac Newton.jpeg|thumb|right|[[Isacco Newton]] ]]
La prima interpretazione moderna della precessione come conseguenza della variazione dell'orientazione dell'asse terrestre si deve a [[Copernico]] (''[[De revolutionibus orbium coelestium]]'', del 1543): il fenomeno era dovuto all'ondeggiamento dell'asse terrestre intorno alla normale al piano dell'eclittica, fermo restando l'angolo relativo di 23° 27'.
La prima interpretazione moderna della precessione come conseguenza della variazione dell'orientazione dell'asse terrestre si deve a [[Copernico]] (''[[De revolutionibus orbium coelestium]]'', del 1543): il fenomeno era dovuto all'ondeggiamento dell'asse terrestre intorno alla normale al piano dell'eclittica, fermo restando l'angolo relativo di 23° 27'.
Riga 162: Riga 158:
4^ 2100/25800*360° = ~30°
4^ 2100/25800*360° = ~30°
-
5^ Neugebauer, O. "The Alleged Babylonian Discovery of the Precession of the Equinoxes," Journal of the American Oriental Society, Vol. 70, No. 1. (Jan. - Mar., 1950), pp. 1-8.
+
5^ [http://books.google.it/books?id=yaRJAAAAMAAJ&pg=PA38&lpg=PA38&dq=albategnius+chaldean&source=web&ots=uJGZIL0uGN&sig=pb0g23nQ1QYgrBvk15Zlz61cHuk&hl=en&sa=X&oi=book_result&resnum=2&ct=result Link]
 +
 
 +
6^ Neugebauer, O. "The Alleged Babylonian Discovery of the Precession of the Equinoxes," Journal of the American Oriental Society, Vol. 70, No. 1. (Jan. - Mar., 1950), pp. 1-8.
 +
 
 +
7^ [http://books.google.it/books?id=BtQOAAAAQAAJ&pg=PA209&dq=egiziani+precessione&hl=en Link]
 +
 
 +
8^ [http://books.google.it/books?id=vuApnLoxLRMC&pg=PA15&dq=egizi+precessione&hl=en&sig=ACfU3U0CwOWVNib40-AELUnNdQl-AvLnZQ Link]
 +
 
 +
9^ [http://books.google.it/books?id=UEiSfS90kW4C&pg=PA170&vq=alter&dq=egypt's+legacy&hl=en&source=gbs_search_s&sig=ACfU3U1ehhOm6EwSDD7y6qK_g9v_tPTl0Q Link]
 +
 
 +
10^ Tompkins (cfr Bibliografia)
 +
 
 +
11^ ''Almagesto'', iii.1, vii.2.
-
6^ Tompkins (cfr Bibliografia)
+
12^ Le eclissi di Luna da lui osservate ebbero luogo il [[21 aprile]] [[146 a.C.]] e il [[21 marzo]] [[135 a.C.]]
-
7^ ''Almagesto'', iii.1, vii.2.
+
13^ ''Almagesto'', vii.1.
-
8^ Le eclissi di Luna da lui osservate ebbero luogo il [[21 aprile]] [[146 a.C.]] e il [[21 marzo]] [[135 a.C.]]
+
14^ 2°/~150anni x 3600"/1° = ~46"/anno
-
9^ ''Almagesto'', vii.1.
+
15^ 360°/~25800anni x 3600"/1° = ~50,26"/anno
== Bibliografia ==
== Bibliografia ==
Riga 188: Riga 196:
== Collegamenti esterni ==
== Collegamenti esterni ==
*http://www.vialattea.net/esperti/php/risposta.php?num=6385 La precessione degli equinozi
*http://www.vialattea.net/esperti/php/risposta.php?num=6385 La precessione degli equinozi
-
*http://www.osservatorioacquaviva.it/sezionefisica/articolidissertazioni/meccanica_celeste/precessione_equinozi/precessione_degli_equinozi.pdf La precessione degli equinozi
 
*http://www.phy6.org/stargaze/Iprecess.htm La precessione degli equinozi
*http://www.phy6.org/stargaze/Iprecess.htm La precessione degli equinozi
-
*http://www.planetariumpythagoras.com/pitagora/divulgazione/sistemasolare/Sistema%20Solare/CDSS/ss1/ss1.7.3.htm Precessione degli equinozi
+
*[http://www.planetariumpythagoras.com/pitagora/divulgazione/sistemasolare/Sistema%20Solare/CDSS/ss1/ss1.7.3.htm Precessione degli equinozi]
*http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Hipparchus.html Hipparchus of Rhodes  
*http://www-groups.dcs.st-and.ac.uk/~history/Biographies/Hipparchus.html Hipparchus of Rhodes  
*http://www.madsci.org/posts/archives/2001-09/1001187215.As.r.html  Can precession occur in the opposite direction?
*http://www.madsci.org/posts/archives/2001-09/1001187215.As.r.html  Can precession occur in the opposite direction?
[[Categoria:Scienze]]
[[Categoria:Scienze]]

Versione attuale delle 19:00, 27 lug 2024

Lo schiacciamento della Terra ai poli può essere schematizzato ipotizzando la Terra sferica con una massa anulare (in azzurro) intorno all'equatore. L'attrazione gravitazionale esercitata sulla massa anulare (in verde) dà origine a una componente tangenziale nord-sud (in celeste), la quale produce una coppia (in arancione): quest'ultima, nel tentativo di raddrizzare la Terra, ne sposta l'asse di rotazione (in magenta) in una nuova direzione (in giallo), dando luogo alla precessione (in bianco).
Rotazione, precessione e nutazione della Terra

La precessione degli equinozi è un movimento della Terra che fa cambiare in modo lento ma continuo l'orientamento del suo asse di rotazione rispetto alla sfera ideale delle stelle fisse.

L'asse terrestre subisce una precessione (una rotazione dell'asse attorno alla verticale, simile a quella di una trottola) a causa della combinazione di due fattori: la forma non perfettamente sferica della Terra (che è uno sferoide oblato, sporgente all'equatore) e le forze gravitazionali della Luna e del Sole che, agendo sulla sporgenza equatoriale, cercano di allineare l'asse della Terra con la perpendicolare al piano dell'eclittica. Il risultato è un moto di precessione che compie un giro completo ogni 25800 anni circa, durante il quale la posizione delle stelle sulla sfera celeste cambia lentamente. Di conseguenza, anche la posizione dei poli celesti cambia: infatti, tra circa 13000 anni, sarà Vega e non l'attuale Polaris ad indicare il polo nord sulla sfera celeste.

La precessione non è perfettamente regolare, perché la Luna e il Sole non si trovano sempre nello stesso piano e si muovono l'una rispetto all'altro, causando una variazione continua della forza agente sulla Terra. Questa variazione influisce anche sul moto di nutazione terrestre.

Indice

Precessione planetaria e lunisolare

Moti della Terra

Premessa

Prima di entrare nello specifico, conviene tenere presente i seguenti punti.

La precessione di una trottola

Moto di precessione

Il moto di precessione può essere spiegato facendo l'esempio della trottola che gira su sé stessa stando perfettamente in verticale.

Quando la trottola riceve un colpetto dall'alto verso il basso, comincia ad ondeggiare con un movimento di precessione: il suo asse si muove descrivendo una circonferenza. In particolare: se la trottola gira in senso orario e riceve il colpetto dall'alto verso il basso, allora la precessione sarà in senso orario; viceversa, se la trottola gira in senso antiorario e riceve il colpetto sempre dall'alto verso il basso, allora la precessione sarà in senso antiorario.

Il moto di precessione della trottola avviene dunque nello stesso verso in cui gira, purché il colpetto sia dato dall'alto verso il basso.

Moto di precessione dell'asse terrestre

La precessione dell'asse terrestre è dovuta, come già detto, a due fattori: la forma non perfettamente sferica della Terra, che presenta un rigonfiamento all'equatore a seguito della rotazione su sé stessa e la presenza di corpi celesti che producono una coppia gravitazionale su tale rigonfiamento.

Se la Terra fosse perfettamente sferica nessun corpo celeste potrebbe esercitare una coppia gravitazionale su di essa: però, a causa del rigonfiamento equatoriale, la Luna e il Sole producono una coppia gravitazionale che tende a raddrizzare la Terra, ossia a far coincidere il piano equatoriale con il piano dell'eclittica. È questa coppia (l'equivalente del colpetto dato alla trottola descritta sopra) che provoca la precessione in senso orario dell'asse di rotazione terrestre. Poiché essa è dovuta all'effetto combinato di Luna e Sole, viene più propriamente chiamata precessione lunisolare.

Anche gli altri pianeti del sistema solare, in misura nettamente minore, esercitano una attrazione sulla Terra, dando vita alla cosiddetta precessione planetaria: quest'ultima è trascurabile rispetto alla precessione lunisolare.

L'effetto della precessione lunisolare è di 50,37" (0° 0' 50,37") in senso orario (di cui 30" per esclusiva influenza lunare), mentre la precessione planetaria è di 0,11" (0° 0' 0,11") in senso antiorario: pertanto, la precessione totale risulta essere di circa 50,26" all'anno in senso orario.

L'asse terrestre descrive quindi una circonferenza completa in circa 25786 anni [1].

Precessione oraria dell'asse terrestre

Il fatto che il moto di precessione della Terra sia orario mentre quello di rotazione su sé stessa sia antiorario non è in contrasto con l'esempio della trottola. Infatti, se la Terra fosse diritta e una forza provasse a inclinarla, allora essa svilupperebbe un moto di precessione antiorario, nello stesso verso quindi della rotazione su sé stessa, proprio come nel caso della trottola.

In questo caso, però, si verifica la situazione opposta: la Terra è inclinata e una forza tende a raddrizzarla, facendo nascere un moto di precessione orario, contrario al verso antiorario di rotazione della Terra.

Differenza anno solare/anno siderale

Si faccia riferimento alla figura sotto: in essa, al solstizio d'estate, la Terra si trova a sinistra rispetto al Sole, inclinata verso quest'ultimo di 23°27', standogli perfettamente di fronte. Supponiamo che la Terra, dopo circa un anno, abbia descritto un'orbita di 360° intorno al Sole, portandosi nuovamente a sinistra: anche se continua ad essere inclinata di 23°27' essa però non sta perfettamente di fronte al Sole come succedeva l'anno prima. Infatti, a causa del moto di precessione occorso in senso orario, la Terra è girata un po' a destra: dal punto di vista del Sole è come se la Terra guardasse alla sua sinistra. Se si vuole considerare il punto in cui la Terra torna a stare esattamente di fronte al Sole non bisogna arrivare a 360°: bisogna, invece, considerare 360° meno una piccola frazione di grado (50"). Di conseguenza, la Terra guarderà direttamente verso il Sole dopo aver descritto 359°59'10" e non 360°, come evidenziato dalla figura.
Il tempo impiegato dalla Terra per ruotare di 360° intorno al Sole corrisponde all'anno siderale, mentre quello impiegato per compiere 359°59'10" corrisponde all'anno solare o tropico: quest'ultimo è quello che, comunemente, viene chiamato anno.
Il calendario gregoriano, da noi in vigore, si basa sull'anno tropico e non su quello siderale: esso, quindi, tiene conto della precessione degli equinozi e garantisce che il solstizio d'estate capiti sempre lo stesso giorno dell'anno, cosa che non succederebbe se si basasse sull'anno siderale.

Trascorso un anno, il solstizio d'estate si anticipa di 50"

Effetti della precessione

Spostamento degli equinozi

La linea degli equinozi è quella che congiunge il punto in cui si verifica l'equinozio di primavera con quello in cui si verifica l'equinozio d'autunno. Come accade per i solstizi, anche gli equinozi si spostano di 50,26" l'anno in senso orario o, equivalentemente, di 1° ogni 71,6 anni circa. La linea degli equinozi quindi si sposta nel tempo girando in senso orario e compiendo un giro completo di 360° in circa 25800 anni: la Terra, di conseguenza, assume inclinazioni opposte ogni 12.900 anni circa.

Ogni 12.900 anni circa, il solstizio d'estate si verifica in posizione diametralmente opposta a quanto succedeva prima.

È proprio dal fatto che la linea degli equinozi si anticipa di anno in anno che l'intero fenomeno prende il nome di precessione degli equinozi: il termine precessione deriva dal latino e significa precedere, appunto a ricordare che gli equinozi ogni anno si presentano con un leggero anticipo rispetto all'anno precedente.

La precessione, come detto, fa sì che il ciclo delle stagioni - associato all'anno tropico e pari al tempo richiesto per ritornare nello stesso solstizio o equinozio, della durata di 365 giorni, 5 ore, 48 minuti e 46 secondi - sia di circa 20 minuti più breve del tempo necessario alla Terra per ritornare nella stessa posizione rispetto alle stelle fisse - associato all'anno siderale e pari al tempo richiesto dalla Terra per compiere una rotazione di 360°, della durata di 365 giorni, 6 ore, 9 minuti e 9 secondi.

Già il calendario giuliano si basava sull'anno tropico così da far cadere l'inizio di una stagione sempre nello stesso giorno: era però un po' lungo perché inseriva un anno bisestile ogni 4 anni e quindi portava ad avere un anno medio di 365 giorni e 6 ore, ossia circa 11 minuti più di quanto avrebbe dovuto essere. L'eccedenza accumulatasi nei secoli divenne di 10 giorni alla fine del XVI secolo: fu allora adottato il calendario gregoriano, così chiamato perché voluto da papa Gregorio XIII e nel quale gli anni "centenari" (quelli che finiscono per "00") non divisibili per 400 non vengono più considerati bisestili. Ad esempio, il 1600 è stato bisestile perché divisibile per 400 ma non lo sono stati più il 1700, 1800 e 1900 che prima, con il calendario giuliano, lo sarebbero stati.

In pratica, nell'arco di 400 anni, il calendario gregoriano toglie tre anni bisestili "centenari", portando la durata media dell'anno a 365 giorni, 5 ore, 49 minuti e 12 secondi: rispetto all'anno tropico è ancora un po' lungo ma non di 11 minuti come nel calendario giuliano, bensì di soli 26 secondi.

Spostamento dei poli celesti

Lo spostamento del polo nord celeste
Lo spostamento del polo sud celeste


La precessione dell'asse terrestre comporta che esso punti nel tempo in direzioni diverse: oggi il polo nord della sfera celeste (la proiezione sulla volta celeste dell'asse terrestre in direzione del Polo Nord) si trova a meno di 1° [2] dalla non molto luminosa stella Polare, la cui magnitudine apparente è infatti di solo 1,97.

Nel 3000 a.C., l'asse terrestre puntava sulla ancor più debole Thuban nella costellazione del Dragone: con una magnitudine di 3,67, essa è cinque volte meno luminosa della Polaris e risulta del tutto invisibile nelle odierne, illuminate aree urbane.

Tra circa 12.000 anni, invece, toccherà alla brillantissima Vega assumere il ruolo di stella polare.

Il polo sud si trova in una porzione di cielo particolarmente sgombra di stelle brillanti. L'attuale stella polare sud è σ Octantis che è di magnitudine 5,5 e quindi a malapena visibile ad occhio nudo anche sotto un cielo particolarmente scuro.

Cambiamento delle coordinate delle stelle

Anche se la precessione dell'asse terrestre (e quindi la rotazione della volta celeste) avviene lentamente, il livello di precisione con cui lavorano gli astronomi è tale che essa deve essere presa in considerazione se non si vuole che le posizioni delle stelle risultino sbagliate. Gli astronomi devono quindi specificare l'epoca alla quale le coordinate di un corpo celeste sono riferite. Durante la maggior parte del XX secolo è stata usata l'epoca 1950, mentre oggi si usa l'epoca 2000. In pratica, si danno le posizioni delle stelle come erano durante l'anno specificato e si applica poi un fattore correttivo (usando formule standardizzate) per tener conto della differenza tra l'anno dell'epoca e la data odierna.

Spostamento delle costellazioni zodiacali

Nell'astrologia occidentale, lo zodiaco è la fascia della sfera celeste che contiene i percorsi apparenti del Sole, della Luna e dei principali pianeti, suddivisa in dodici parti uguali, detti segni zodiacali. L'anno zodiacale inizia nel punto in cui il piano dell'eclittica interseca il piano equatoriale terrestre nell'equinozio di primavera (punto vernale o punto gamma), quando il Sole si sposta nell'emisfero settentrionale della Terra.

La precessione degli equinozi ha fatto sì che i segni zodiacali, una volta coincidenti con le zone di cielo occupate dalle rispettive costellazioni, siano oggi in realtà spostati di una trentina di gradi: tra l'inizio di un certo segno zodiacale e l'entrata del Sole nella costellazione con lo stesso nome passa circa un mese. Ogni costellazione dello zodiaco copre, infatti, 30° [3][4], provocando il ritardo di un mese.

La precessione maturata in 2100 anni ha avuto come conseguenza che la Terra ruotasse il suo asse di rotazione di 30° alla sua destra: al solstizio d'estate, mentre 2100 anni fa il sole si trovava a transitare nella costellazione del Cancro, oggi, a causa della precessione, lo stesso transita in quella dei Gemelli.

Pertanto, quando una tavola astrologica indica che un certo pianeta "entra" in un segno, essa si riferisce ad un settore di cielo occupato in realtà dalla costellazione col nome del segno precedente: per esempio, nel periodo dell'Ariete, il Sole si trova in realtà nella precedente costellazione dei Pesci.

La maggior parte degli astrologi sostiene che la discrepanza è solo apparente, perché le stelle che appaiono sullo sfondo sono del tutto ininfluenti.

Storia

Babilonesi

Secondo Albategnius [5], gli astronomi caldei distinguevano l'anno tropico, stimato in 357 giorni, 5 ore, 49 minuti e 30 secondi, da quello siderale, stimato in 365 giorni, 6 ore e 11 minuti e quindi dovevano essere a conoscenza della precessione.

Si è inoltre discusso [6] del fatto che l'astronomo Kidinnu avesse ipotizzato la precessione già nel 315 a.C.: tuttavia, non ci sono indicazioni che egli avesse realmente raggiunto una tale conclusione e quindi si è propensi a scartare l'idea che l'astronomo babilonese sia stato il primo scopritore del fenomeno.

Egizi

Lo zodiaco del Tempio di Hathor a Dendera

Altri sostengono [7][8] che la precessione fosse nota agli antichi Egizi prima di Ipparco.

Alcune costruzioni (come quelle nel complesso templare di Karnak) sarebbero allineate verso punti dell'orizzonte in cui certe stelle sorgevano o tramontavano in momenti chiave dell'anno. Quando, trascorso qualche secolo, la precessione rendeva gli allineamenti obsoleti, i templi venivano nuovamente ricostruiti per tenere conto delle nuove orientazioni [9]. È da notare tuttavia che il fatto che l'allineamento di una stella fosse diventato obsoleto non necessariamente significava che gli Egizi avessero compreso il meccanismo dello spostamento delle stelle nel cielo al tasso di 1° ogni 72 anni: ciò nonostante, ipotizzando che registrassero la data della ricostruzione dei templi, è plausibile supporre che avessero notato, sia pure approssimativamente, il fenomeno della precessione.

Un altro esempio a sostegno della conoscenza del fenomeno da parte degli Egizi è dato [10] dallo Zodiaco presente nel tempio di Hathor a Dendera della tarda età tolemaica: si ritiene che tale mappa registri la precessione degli equinozi.

Ad ogni modo, anche ammesso che gli Egizi conoscessero la precessione, tale fatto non è stato tramandato in alcun testo astronomico.

Ipparco

Anche se Aristarco di Samo possedeva valori distinti per l'anno tropico e quello siderale già nel 280 a.C., la scoperta della precessione è solitamente attribuita all'astronomo greco Ipparco di Nicea, intorno al 130 a.C., il quale ne diede una spiegazione nella sua opera Sullo spostamento dei segni solstiziali ed equinoziali; l'opera di Ipparco è andata perduta, ma il metodo da lui adottato è descritto nell' Almagesto [11] di Claudio Tolomeo, astronomo del II secolo.

Ipparco misurò la longitudine dell'eclittica della stella Spica e di altre stelle luminose durante un eclissi lunare [12]. Egli aveva già sviluppato un metodo per calcolare la longitudine del Sole in ogni momento del giorno e della notte: bastava quindi sommare a questo dato altri dati opportuni per ricavare la posizione di una stella. Pensò allora di basarsi sulle eclissi lunari che si verificano sempre di notte (quando anche le stelle sono visibili per poterle misurare), durante un plenilunio, in corrispondenza dell'allineamento Luna-Terra-Sole: al culmine dell'eclissi, la Luna è esattamente a 180° dal Sole. A Ipparco bastò semplicemente misurare l'arco longitudinale che separava Spica dalla Luna proprio al culmine dell'eclissi: a questo valore, egli sommò la longitudine che presentava il Sole in quel momento grazie al metodo che aveva sviluppato, più 180° per la longitudine della Luna, in esatta opposizione al Sole. Trovò così che Spica era circa 6° a ovest del punto dell'equinozio autunnale. Confrontando le sue misurazioni con quelle di Timocari di Alessandria (contemporaneo di Euclide) e di Aristillo (III secolo a.C.), autori del primo catalogo stellare del mondo occidentale di cui si abbia traccia, notò che la longitudine di Spica era diminuita di circa 2° in più di 150 anni. Ipotizzò che solo le stelle dello zodiaco si fossero spostate nel tempo: Tolomeo la chiamò "prima ipotesi" [13], ma non riportò altre successive ipotesi che Ipparco avrebbe successivamente avanzato. Considerando lo spostamento misurato di 2° in 150 anni, Ipparco stimò la precessione in 46" l'anno [14], molto vicino al valore effettivo di 50,26" [15] e senz'altro migliore della stima di 36" fatta tre secoli dopo da Tolomeo.

Ipparco inoltre studiò la precessione nell'opera Sulla lunghezza dell'anno. Usando le osservazioni degli equinozi e dei solstizi, notò che la lunghezza dell'anno tropico era di 365+1/4-1/300 giorni, ovvero 365 giorni, 5 ore, 55 minuti e 12 secondi; avendo stimato che la velocità di precessione era non inferiore a 1° in un secolo, calcolò la durata dell'anno sidereo in 365+1/4+1/144 giorni, ovvero 365 giorni, 6 ore e 10 minuti.

Tolomeo

Il primo astronomo a continuare il lavoro di Ipparco sulla precessione fu Claudio Tolomeo nel II secolo. Tolomeo misurò la longitudine di Regolo, Spica e altre stelle luminose ma senza basarsi sulle eclissi di Luna come aveva fatto Ipparco.

Prima del tramonto, egli misurò l'arco longitudinale che separava la Luna dal Sole. Poi, dopo il tramonto, misurò l'arco longitudinale che separava la Luna dalla stella in considerazione. Usò il metodo che aveva sviluppato Ipparco per calcolare la longitudine del Sole e operò delle correzioni per tener conto del moto della Luna e del suo parallasse durante il tempo intercorso tra la misura fatta prima del tramonto e quella dopo il tramonto.

Tolomeo confrontò i suoi dati con quelli di Ipparco, Menelao di Alessandria, Timocari e Agrippa, e scoprì che tra l'epoca di Ipparco e la sua (circa 265 anni), le stelle si erano spostate di 2° 40', ossia 1° in un secolo (36" l'anno contro i 50,26" l'anno attualmente accertati equivalenti a 1° in 72 anni). Osservò inoltre che la precessione riguardava tutte le stelle fisse e non solo quelle vicino all'eclittica, come ipotizzato da Ipparco.

Altri astronomi dell'antichità

La maggioranza degli astronomi dell'antichità non fa menzione della precessione.

Il filosofo Proclo rigettò il moto di precessione, mentre Teone di Alessandria accettò la spiegazione di Tolomeo. Teone propose una sua teoria alternativa, secondo la quale da una certa epoca in poi il solstizio aveva avuto uno spostamento di 8° nell'ordine dei segni, seguito da uno spostamento di analoga ampiezza ma in senso opposto. Anziché avanzare continuamente lungo lo zodiaco, gli equinozi "trepidavano" avanti e indietro di 8° di arco. La teoria della trepidazione è data da Teone in alternativa a quella della precessione.

In Oriente, Yu Xi, vissuto nel IV secolo a.C., fu il primo astronomo cinese a menzionare la precessione: egli stimò la sua velocità nell'ordine di 1° ogni 50 anni.

Dal Medio Evo in poi

Nel Medio Evo, gli astronomi considerarono la "trepidazione" come un moto delle stelle fisse da sommare alla precessione e non in sua alternativa. Questa teoria è attribuita all'astronomo arabo Thabit ibn Qurra, anche se fu Teone che per primo parlò di trepidazione, considerandola però un moto alternativo a quello della precessione e non da sommarsi a quest'ultima.

La prima interpretazione moderna della precessione come conseguenza della variazione dell'orientazione dell'asse terrestre si deve a Copernico (De revolutionibus orbium coelestium, del 1543): il fenomeno era dovuto all'ondeggiamento dell'asse terrestre intorno alla normale al piano dell'eclittica, fermo restando l'angolo relativo di 23° 27'.

La spiegazione fisica della precessione in termini di interazione gravitazionale fra la Terra e gli altri corpi del sistema solare, in particolare la Luna ed il Sole, fu dovuta a Isacco Newton e fu riportata nella Philosophiae Naturalis Principia Mathematica del 1687.

La teoria di Newton prevedeva anche che il moto di precessione fosse accompagnato da lievi oscillazioni periodiche sia della velocità di precessione sia della obliquità, oscillazioni ribattezzate complessivamente come nutazione e dovute al fatto che le forze agenti sulla Terra non sono costanti: esse furono poi effettivamente osservate dall'astronomo inglese James Bradley nella prima metà del XVIII secolo. Le oscillazioni avevano però ampiezza molto maggiore di quanto aveva previsto Newton; il fisico inglese aveva infatti sottostimato il contributo della Luna alla precessione. La trattazione matematica rigorosa dei moti di precessione e nutazione si deve ai matematici del XVIII secolo, fra i quali spiccano i nomi di Jean Baptiste Le Rond d'Alembert ed Eulero.

Note

1^ (360°·60'/1°·60"/1')/50,26= 25785,913...

2^ Il momento di maggior vicinanza alla direzione del polo è previsto per il 2017.

3^ 360°/12segni = 30° di fascia zodiacale: negli ultimi 2100 anni, la precessione ha spostato gli equinozi (o i solstizi) di 30°

4^ 2100/25800*360° = ~30°

5^ Link

6^ Neugebauer, O. "The Alleged Babylonian Discovery of the Precession of the Equinoxes," Journal of the American Oriental Society, Vol. 70, No. 1. (Jan. - Mar., 1950), pp. 1-8.

7^ Link

8^ Link

9^ Link

10^ Tompkins (cfr Bibliografia)

11^ Almagesto, iii.1, vii.2.

12^ Le eclissi di Luna da lui osservate ebbero luogo il 21 aprile 146 a.C. e il 21 marzo 135 a.C.

13^ Almagesto, vii.1.

14^ 2°/~150anni x 3600"/1° = ~46"/anno

15^ 360°/~25800anni x 3600"/1° = ~50,26"/anno

Bibliografia

Voci correlate

Collegamenti esterni

Strumenti personali
Namespace
Varianti
Azioni
Menu principale
Strumenti